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Abstract—A new high-precision finite element for analysis of shell structures is presented. It is derived
from a slightly generalized equilibrium principle. Accordingly both stresses and displacements are obtained
as primary result of analysis. At the assembly level the element has 45 degrees of freedom, all of them
generalized displacements, For the price of some additional computational effort on the elemental level of
analysis the proposed element is believed to gain certain advantages over the recently developed high-
precision displacement elements. Thin as well as thick shell structures of arbitrary shape and loading can be
equally analyzed. Engineering accuracy is attained with only very few elements. A variety of numerical
examples demonstrates the applicability of the new element to all kinds of situations occuring in practice. A
review of the existing high-precision shell elements is also included.

INTRODUCTION
The history of shell analysis by means of finite elements goes back to the early sixties. The first
attempts of flat plate approximation have had only limited success due to the disregard of
curvature coupling within each element. As a consequence a very large number of elements
had to be used in order to achieve satisfactory accuracy. Inclusion of the curvature effect inside
the element led to development of a variety of shallow shell approximations. Considerable
improvements have been reported with these elements in comparison with the previous
approach. However, in cases of deep shells with short wave length in displacement and/or
stress distribution the shallow shell elements did not prove to be the radical answer for an
efficient shell analysis. Indeed, any improvements made in representation of the shell variables
and/or geometry ought to be ineffective if the governing differential equations and boundary
conditions are not regarded with adequate rigour. It is doubtless that the recent development of
many types of high precision shell elements has been largely influenced by the above mentioned
argumentation. An exhaustive number of these are described in Refs. [1-10]. In Refs. [1-4]
sophisticated triangular thin shell elements are presented. They are shown to be highly efficient
(see also {11, 12]) in cases with smooth strain distribution. Unfortunately they are much less
suitable when this is not the case as often occurs in situations with jumps in thickness or shell
panel intersections. Very similar conclusions can be drawn for the various curved quadrilateral
shell elements presented in [5-8] perhaps with exception of one of the versions in [5]. In that
version a nonconforming element is obtained with only displacement and rotational degrees of
freedom at nodes. A very attractive idea for a mixed-type shell element has been presented by
Visser[9]. Relatively high order representation of the variables becomes possible with only 24
degrees of freedom per element. Furthermore shell intersection analysis is exhibited. Its
drawback becomes evident when more than two panels intersect or a common boundary is
subject to action of a prescribed normal moment distribution. In those cases a normal moment
equilibrium equation must be added and the moments pertaining to the different elements
should be kept as independent degrees of freedom. Another promising approach is that of
Zienkiewicz et al.[10]. A quadrilateral shell element is derived from a three-dimensional
isoparametric form by prescription of linear displacement variation across the thickness and
supression of energy due to strain normal to the middle plane. Reduced numerical integration
allows the element to be used in thick as well as in thin shell analysis. The five degrees of
freedom at each node consist of purely displacement and rotation components. Accordingly
“parabolic” 40 degree-of-freedom and “cubic” 60 degree-of-freedom elements are developed.
Forces can be reproduced respectively up to first and second order accuracy provided the
reduced numerical quadrature does not harm the moment accuracy. In Ref. [8] the whole
approach is somewhat doubted on the basis of uncertainty of invariance and reciprocity
satisfaction. This is further strengthened in Ref. [4] showing convergence of the isoparametric
element to a shallow shell theory result. Numerical examples of a number of classical deep thin
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shell problems would give a decisive engineering answer for the range of applicability of these
elements.

This paper deals with a new curved triangular equilibrium shell element. The equilibrium
finite element method was introduced by Fraeijs de Veubeke[13]. Though accuracy in stresses
is in most cases of higher importance for the engineer than that of displacements, the method
has not gained the expected popularity. In its earlier form it was less suitable for creation of a
general computer programme. Guidelines for construction of equilibrium elements which can be
incorporated in any standard computer programme were published in a paper by Watwood and
Harz[14). The difficulty in employing the method in shell analysis lies in the requirement of
exact a priori satisfaction of field and boundary equilibrium. The idea of overcoming this
obstacle is of the authors. It has been demonstrated on the simple case of curved bars[15, 16].
A clear physical reasoning can be summarized in the following sequence of statements:

(a) The pure equilibrium method converges in compatibility with refinement of finite
element mesh.

(b) Exact equilibrium satisfaction is abandoned in the present approach but it is satisfied at
least to the same order of accuracy as compatibility.

(c) Exact overall equilibrium is assumed to be satisfied in each element and along each
particular boundary.

(d) The residual loading obtained after substitution of numerical results into the exact
governing equations is self-equilibrating. It is of a local nature and vanishes with decreasing
element size.

(e) Convergence in equilibrium is at least as fast as that of compatibility. The solution for
any particular subdivision can be seen as an exact equilibrium result for a slightly different
loading. The difference in loading is described in paragraph (d).

(f) Finally satisfaction of exact overall equilibrium can also be relaxed. The residual
unbalanced loading should be of smaller order than the residual self-equilibrating one.

Paragraphs (a)-(f) outline the physical basis upon which the proposed shell element is
constructed. Naghdi's[17, 18] shell equilibrium equations and complementary energy expression
are employed. A very favourable property of the equilibrium shell element is its versatility with
respect to the shell thickness. No artificial manipulation is necessary to handle thick or thin
shell situations. Shell structures of arbitrary shape and loading can be treated as well. All the
shell boundary variables have a parabolic distribution. On the assembly level the degrees of
freedom at each side ‘“‘node™ consist of three displacement and two out of plane rotation
components. The whole element thus has 45 degrees of freedom. Quadratic convergence both
in stresses and displacements can be considered to be the most important characteristic of the
new element. It can be incorporated in standard computer analysis systems. Furthermore a
complete library of flat plate elements, three dimensional elements etc. can be consistently
developed. In comparison with other high precision shell elements, the proposed one possesses
certain advantageous features for which an extra amount of computational effort on the
elemental level has to be paid.

A STRESS MODEL APPLICABLE WHEN EXACT A PRIORI EQUILIBRIUM
SATISFACTION IS IMPOSSIBLE

The variational principle upon which the proposed shell finite element is outlined res-
presents a further modification of a generalized Hellinger-Reissner principle attributed to
Washizu[19]. Due to the general nature of the idea and desire for a clear interrelation picture
with other principles, the functional is first presented in its three dimensional linear elasticity
form. Application to the shell equations is then straightforward and will be made in the next
section. We adopt the notation in Appendix I of Ref. [19] with a few exceptions concerning the
new extension. Accordingly the following symbolism is introduced using Cartesian tensor
notation (i, j, k,1 =1,2,3):

oy stress tensor
bsu elastic compliance tensor
€; strain tensor

u;, ii; displacement vector

T. boundary traction vector
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V  volume (of an element)

S boundary of V

S, portion of S where traction is prescribed

S. portion of S where displacements are prescribed
n: direction cosines of normal directed outwards to S
fi prescribed body force vector

T. prescribed boundary traction vector (on S,)

@ prescribed displacement vector (on S.).

The functional is a special version of a perturbed complementary energy expression:
’Tl':c = 2 {j [%buuﬂ'ucrkl + (a'ij,j + fi)ui] dv
\Z
- f T.(&" + &) dS + f @™ + &™) ds} (1
s So

with oy, u, @' and & being the independent quantities subject to variation. The displacement
vectors " and @ are defined on the elemental boundaries only. & is specified common for
two neighbouring elements while o, u; and 4 are specific for each single element and as such
can be eliminated on the elemental level of analysis. The assembly level of analysis is thus

performed purely on values of #” and the subsidiary condition:
=i onS. )

is easily enforced as in the familiar displacement model. S. associated with &® is assumed to

be nonexistent. Further #,” is chosen orthogonal to T and T" defining the partitions

T.=T"+T® and T,=T"+T®. This allows suppression of traction modes, of which
continuity is undesired, independently for all the elements joining a common boundary.
Taking into account the relations
T:. = aii;  on S (3)
and

€ =Huytu:) inV )

the stationary conditions for w¥%. obtained by the requirement
y

dmhe=0 &)
appear as:
bwe— & =04 iy y ©
ouitfi=0 0]
w—a"-a®=0 onS ®
Z(T?'(’z)—_f?'(’z)) _ 8} on 5. (1((2;

When tractions are prescribed on an interelement boundary their intensity is given by 3T.
Their distribution among the elements involved is arbitrary. Obviously the equilibrium con-
dition 3(T: — T;) = 0 always holds.

The following goals have guided the authors towards construction of the functional 7%.:

(a) Stresses (forces) as well as displacements should be obtainable as primary result of
analysis and with the same order of accuracy.
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(b) Boundary traction representation should be consistent with the order of accuracy to
which the stress approximation is capable of reproducing the true solution. Simultaneously the

internal and boundary displacement fields u; and &'" should be represented consistently. The

capability of « to match /" on the boundary is of special importance when extension to dynamic
problems is considered.

(c) The various expressions involved in A« = the difference in 7%, between the exact and
Ritz solutions, should allow the same convergence rate (provided convergence exists). If this is
achieved as close as possible convergence is optimal.

Paragraph (c) invites a further observation. Let the superscripts E and R relate to the exact

and Ritz solutions respectively. It is not difficult to show that the difference in m%. is given by:
Ark = akl-mrf=Y {f Gbiu(os — o) oa— o)
\Z

+ (o — on)w® — u)]dV - f (TF - T:wE - a"f - 1% ds}. (1)
S

The first expression (the only one in the pure equilibrium method) represents the difference in
complementary energy. Difference in equilibrium is given by the second and third expressions
in V and on S respectively. We assume the approximate quantities o, u and &% can
reproduce the true solution up to the highest order of complete polynomial p incorporated in
their shape functions. p is chosen common to all the quantities mentioned and obviously
determines also the extent to which the actual boundary traction can be reproduced by T:"%.
Let h denote a measure of maximum diameter representing the elemental size. Accordingly the
first expression has the order h***>. Inclusion of incomplete polynomial terms of order p + 1 in
o; allows improvements in internal equilibrium satisfaction. The second expression then
reaches as well the order h****. In both expressions the power 2p + 2 is not influenced by finite
element mesh refinement since summation and integration is carried out over a constant total
volume. This is not the case for the line integral expression. The total boundary length increases
with systematic mesh refinement by the rate of h™'. > and ™ are designed as to consist of
polynomial terms of order p + 1. Observing eqns (8) and (9) it turns out that the first and second
terms in the line integral have the orders h°*' and h”’” respectively. The total order of the
boundary expression is finally also h™**.

The pure equilibrium method allows true stress reproduction up to order p, while equili-
brium in V + S is exactly satisfied by the Ritz solution. The key idea of the present approach
lies in finding a technique permitting systematic satisfaction of equilibrium in V+S to a
controllable extent. That extent, in the shell element derived, is determined by optimal
convergence.

APPLICATION TO SHELLS

Through application to shells of the functional m%. introduced in the previous section, we
employ results from the theory of shells[17, 18] and the differential geometry of a surface
without any recapitulation of material. We adopt as close as possible the notation of Ref. [17)].
In the following list of symbols the various surface tensors are presented in component form.
Greek indices span the range 1,2:

a; metric tensor
a det|a;|
b.s, bs™ curvature tensors
v, Uunit vector normal to boundary
A. unit vector tangent to boundary
N=® N°2,N* membrane forces
M®,M* bending moments
Q°, Q shear forces
b.svs, Cog  elastic compliance tensors

— =

p°,p prescribed surface forces

=a

m* prescribed surface couples
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N°,M*,Q prescribed values of N, M, Q
U, By w, w  displacements
Bas B. rotations
A area (of element)
L,L,, L. boundary of A
t thickness.

The relations required for construction of 7% in a form convenient for numerical analysis
are described in the following paragraphs (a) to (c).

(a) A complementary energy function W. according to Ref. [18] (with M>* = V* =0) can be
expressed as:

1
2t

[bam (N""’N”5 + 12 M"‘"M”) + g CuBQ"QB] (12)

Wc
t2

where the symmetric membrane force tensor is given by:
N"=® =N+ pPM™ (13)

and the moment tensor M*® is symmetric.
For an isotropic elastic material with E, G, v being the Young modulus, shear modulus and
Poisson’s ratio respectively, we have:

bapos = 3 Vot = (1 V)t (14)

1
Caa = 5 Aap. (]5)

(b) Field equilibrium equations take the well known classical form:

N =b,Q" +p" =0 (16)
Qi+t N™ +5=0 (17
ME-Q +m* =0 (18)

ép(N** = bPM™) =0 (19

where the é-system for the surface is defined by:
En=Ex=0, €|2=—Ez|=al/2.

Equation (19) is homogeneous due to assuming the absence of in plane couples and will be
satisfied exactly by the finite element approximation.

(c) Boundary equilibrium equations are conveniently transformed to a new orthogonal
coordinate system created on the boundaries by the triplet of unit vectors according to Fig. 1.



688 M. GELLERT and M. E. LAURSEN

In that system all the tensors involved are represented directly by their physical components.
Results provided by the program are extremely easy for interpretation by the user. This natural
global coordinate system is inherent in the proposed finite element model comprising only side
nodes.

The resulting equations are:

SN = N =0, (20),
N e g 20);
S(M™ - W) = 0, =
M j = av.
Q" -QM)=0; (22)
Q?-0? =9 (22),

where the boundary forces are obtained as a partial product of a standard tensorial trans-
formation from one coordinate system to another:

N'=N"%p,vs (23)
N?=N*®p2a {24)
M'=M"* v, 25)
M’ =M"p,A, (26)
Q=0Q%.. 27

Boundary displacements ., w and . appearing in the line integral products are defined
consistently in the new coordinate system.

By means of eqns (12), (16-18), (20-22) the functional 7%, takes its particular form when
applied to shells:

whe= 3 { [ (W (VB - 0707 + 57 + Q1+ BN+ yw + (ME = Q° + )81 A
A
__f {Na{ﬁﬂ(1)+&n{2))+Ma(éum+l§&(2))+ Q(Wm‘{' ﬁ,m)] dL+f [N“(ﬁum*i-ftﬂm)
L L,

+ Ma(ﬁ"a(l)+ B'G(Z)) + Q(W“)“‘ W\Z))] dL} (28)

Equations (16)-(18), (20)-(22) are obviously obtained as stationary conditions for = %. In
addition the vanishing of =%, supplies the stress-displacement relations:

b aN" =2t + lisi) + bug =0 @9)
12 8 1 b b4
F begysM™ — 5 {Bais + Baia = ba” (Uyip — byeW) — b (Uyje = byaw] =0 (30)
6 B ¥ —
§ 'GEQ —Ba_wyu"bu uy"o (31)

provided the subsidiary conditions on L.:
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and
Bol" = B. (34)
are fulfilled.

DISCRETIZATION TECHNIQUE

In this section discretization of the governing equations and shell geometry is dealt with in
general. For more detailed information concerning the technique employed the interested
reader is advised to consult Ref. [28].

The element is defined by the choice of a group of 28 points located on the shell middle
surface according to Fig. 2. Three points at each side, for instance 1-4-2, 2-5-3, 3-6-1, serve as
elemental nodes.

Fig. 2.

A cartesian coordinate system is fixed in the plane passing through the three element corner
points defining a curvilinear coordinate system on the shell surface (see Fig. 2). The 28 points
chosen allow a 6th order polynomial representation of the middle surface as well as its
boundaries projected onto the reference plane. It is worth mentioning that boundaries common
to two elements will take different shapes when projected onto the different reference planes.
This assures that integration over the projected areas covers the whole shell surface involved
without creating any gaps or overlaps.

The approximation of geometry introduced yields an error of order h* in bs,. This is one
order better than the minimum necessary for not spoiling equilibrium accuracy by insufficient
approximation of the geometry.

Let the column vectors ¢, v and v’ (k = 1,2) denote consistent sequential arrangement of
components of the force, internal and boundary displacement tensors. Then following the
standard finite element technique we can write:

oc=Pg 33)
v=La (36)
v(k)=L(k)a(k); k= 1’2 (37)

where P, L and L’ are shape function matrices and B, &« and a*’ are the unknown Ritz

coefficient column vectors. The structure of P, L and L* must be illuminated further. P
comprises complete second order polynomials for every component N'*® and Q as well as
complete third order polynomials for each component M, In addition incomplete 3rd and 4th
order polynomials are included allowing satisfaction of internal force and rotational equilibrium
up to orders 2 and 3 respectively. This yields representation of boundary forces to order 3 while
boundary moment components are represented up to order 4. Arrangement of these in column
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vector form T gives:
T=P.8 (38)

where P, is a boundary shape function matrix. w as well as the components u. are represented
by complete second order polynomials in L while the rotation components 8. by complete third
order ones.

Each boundary displacement and rotation component has a complete 2nd order polynomial
representation in L.

The matrix L consists of Legendre polynomials. Their order for displacement components
is 3 while those belonging to moment components have the orders 3 and 4.

In fact the field force and displacement variables are defined independently in each of the
three subelements according to Fig. 2. The force quantities are interrelated by means of exact
intersubelement equilibrium satisfaction. The argument for employing that sort of technique is
explained in Ref. [14] and will not be repeated here. It is assumed that & and v comprise the
total number of independent quantities as well as that the [ sign symbolizes integration over all
the three subregions. It remains yet to cast the elastic compliance tensor components into a
matrix form C and the components of body force and surface force tensors into vector form &
and T respectively. Doing so we are able to express field equilibrium in matrix notation

Bo+a=0 (39)

where B is a differential operator matrix.
Finally eqns (35)—(39) allow expression of m%. in matrix form:

X =3EBTHB +a"MB +N)—a"(G"B-T™) - a®"(F'B - T?)] (40)
with
H= LPTCP dA (41)
M= L L"BPdA 42)
N= L L'¢ dA (43)
G= [ RrLva (44)
F-[RLodL 45)
TV = fL L®TdL (46)
T® = fL L®TdL. 47

We first utilize the fact that a part of the Ritz coefficients is specific for each element. The
stationary condition for 7%. with respect to variation of & and a® is:

*
T —MB+N=0 @8)
Bw.f.c T 2)
I = —F"B+ T =0 )

Ja
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or
AB+R=0 (50)
where
M
A= l$ (51)
and
N
R= {Fﬁ} (52)

Equations (48) approximates field equilibrium in an element. Due to orthogonality of
Legendre polynomials to every polynomial of lower order than their own eqn (49) assures
approximate satisfaction of boundary equilibrium independently for each element for boundary
traction modes of higher order than 2. Thus only traction modes up to order 2 are left to be
continuous keeping the order of reproduction of true forces equal inside the element and along
its boundaries. Without loss of generality we can assume the convenient arrangement of A and

B:

A=|AIA| (53)
B = {%} (54)

where A is positive definite and § is to be eliminated:

B=-A"'(AB +R). (55)
We get:
B=D"B-R (56)
by means of:
s ]I
D' = |_3_|A| (57)
and
R=1_0
R= {Z“R}' (58)

If desired the values of & can be calculated from an appropriate part of the equations
(8whe)(3P).

Employing eqn (56) in eqn (40) a new form of 7% is obtained:

7k =SB HB-Z'B - a“T(GTB -TV) + C, (59)

where C:=3R"HR
and H =DHD" (60)
G=DG (61)
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T"=G"R+T" (62)
Z=DHR. (63)
The stationary condition of #%. with respect to variation of g is:

Frime
B

H is symmetric and positive definite hence B can be calculated as:

~fif-2-Ga"=0. (64)

B=H"'Ga"+2). (65)
Substitution for B into eqn (59) finally provides the familiar functional:
r=3e" " Ke'" - a"7§]+ C: (66)
with the element stiffness matrix
K=G'H'G (67)

and the element loading vector

§S=T"-G"H'Z, (68)

The constant C. =332 H 'Z~ C, has no influence on the results. The process of assem-
bling the element matrices into global ones is the same as in the displacement model and will
not be repeated here. After &” is evaluated the coefficients § can be calculated from eqns (65)
and (55).

NOTES ON CONVERGENCE OF THE ELEMENT

When an exact solution is to be reached as the limit of a sequence of approximate solutions
completeness consideration demands determination of the space of all the solution functions.
The following most singular forms of loadings, geometric and material properties are assumed
to appear in the shell domain: point loads, piecewise continuous surface couples, shell
thickness, elastic compliance and curvature tensor components. The space of permissible force,
moment and displacement tensor components then can be found by inspection of #%. term by
term. 7%, remains uniquely defined if the degree of component singularity does not exceed the
following limits:

N°®, Q°, B.—piecewise continuous;

M, u,, w—continuous.

In order to exploit the full element capability of the true solution reproduction we enforce a
continuity restriction which always can be easily obeyed by judicious lying down of finite
clement mesh. We require the loadings and other shell data to fulfill in every element the
smoothness conditions: Prescribed forces, shell thickness and elastic compliance constants
having continuous second derivatives. Prescribed couples and shell curvature components
having continuous third derivatives. Discontinuities in lower order derivatives are assumed to
occur on the element boundaries and corners.

With those restrictions satisfied a proof of convergence with a rate of #” of all the quantities
involved has been found by the authors in the spirit of Refs [16] and {27]. It turned out,
however, that a general way for convergence investigation of a broad class of mixed and hybrid
models has been recently worked out by Oden and his co-workers?t (partly in print at the time

+The authors are indebted to Prof. J. T. Oden for his kindly supplying of the most updated material.
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the present paper is being written). It is believed by the authors that application of the general
theory contained in the series of Refs [20]-[24] to a particular case of the proposed shell model
can be made. It is undoubtedly a lengthy procedure lying outside the scope of the present

paper.

NUMERICAL STUDIES

It is expected that an exhaustive series of numerical examples will not only verify the
proven rate of convergence but also yield recommendations for mesh size selection in typical
cases of shell behavior. The two extreme situations when pure bending or membrane action
results as a solution of the coupled shell equations are revealing.

(a) The pure bending situation. Let M denote a prescribed boundary moment causing pure
bending and | a typical wavelength. (For clarification of the concept of wave length in shells see
Ref. [25].) Then equality in complementary energy error (o(h*) implies the following relation
for the residual membrane forces (component indices omitted) provided the shell is isotropic:

Y 3
N“=NR—NE=%0(MR—ME)=AT'I%O(?). (69)

Only when h*/I*t = o(1) can we expect N ¥ to begin to vanish relative to M//. This enforces a choice
of elemental size of

h < o(V1D). (70)

It turns out that the case treated is the most unfavourable one, due to the special structure of
the proposed finite element model. An assessment of elemental size needed in such a situation
will be made for the case of a slit cylinder in pure torsion. The geometry of the panel analyzed
is essentially the same as in Ref. [8]. It is approximated by joining two triangular elements
according to Fig. 3. Since in this case | = R, eqn (70) yields:

h=o(V10) or ¢=0(0.2).

Table 1 contains results for twist per unit length (8), twisting moment (M X ¢) and order of
membrane forces for various values of ¢. The results appearing in Ref. [8] are compared with
those obtained by use of the proposed element. In Ref. [8] the rigid body modes are secured in
two different ways: (1) w = u, = u>. =0 at one corner, w = u, = 0 at another corner and w =0 at
a third corner. (2) w =0 at all the four corners and u, = u, =0 at one corner.

The elements tested in Ref. [8] appear to be sensitive with respect to the manner of
securing rigid body modes. No significant differences have been obtained with the proposed
element for various alternatives of boundary conditions which avoid rigid body motion. This
insensitivity can be seen as an inherent feature of the new shell element.
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Table 1.

¢ =0.01

g% M. = M=M?> (N}

24 dof., bel 1.77 496 0[S}
Ref. (8] | 24 dood. be2 7.80 497 0l0.1]
48 d.o.f., b.c.2 7.80 499 0[0.1]
Sheba 3 7.80 500 0[0.1)
Present approach 7.80 500 0[0.0002]
Classical 7.80 500 o[5]
¢ =01

§x10° M, =M7=M" o(N"*)

24 dof.. be.l 7.16 460 o[M..]
24 d.of.. b2 7.80 497 0{0.1]
Ref. (8] 48 d.of., b.c.l 7.77 498 ol0.1]
48 d.of., b.c.2 7.80 499 0[0.1]
Sheba 3 7.80 500 ol4]
" Present approach 7.80 500 of2]
Classical 7.80 500 ol[5]
=02

x10° M., =M7=M" o(N")

24d.of,bc.l 5.57 448 o[M.,]
Ref. (8] { 48d.of., bl 7.74 496 o[5)

Present approach 7.80 500 0{30}

Classical 7.80 300 ol5]

{b) Pure membrane action. Let p denote a prescribed loading and | again a typical
wavelength. Analogous considerations to those of case ““a” yield:

3
MR=MR—ME'—'to(NR-NE):p'lz;o(?). 7y

Hence M® will have a vanishing tendency relative to pI° when th’/l*<o(1), allowing a
convenient choice of order for h:

h=o(IVI[D. (72)

Equation (72) states that in cases with [ having the magnitude of shell span, a single element
should suffice.

This will be demonstrated by analyzing a large cylindrical panel under membrane action (see
Fig. 4). Two loading cases are considered, according to Fig. 5. The results are collected in Table
2 and compared with exact values. The results clearly verify the validity of eqn (72).

N=1
U2=O
R=1
L=y
u?'O ‘ t =005
E=1
¥ =
R 220 yio3

>
\
w
N
n 1]
o
o

Fig. 4.



A new high-precision stress finite element for analysis of shell structures 695

Table 2.
Loading case 5a Loading case 5b
/L N" N##N" M= /L N% N=®##N?% M=
¢=9%° -196 -1.00 0(107%) 0(107%) 5.90 -1.01/-0.95 o(5-107) 0(107%)
=45 -1997 -100 0(107) o(5-107)y 5993 -1.000 o(5-107Y  o(107%)
exact —20 -1.00 0 0 6 -1 0 0

(c) Shells subject to combined membrane and bending action. The example of a pinched
sphere has been chosen to demonstrate the new shell element’s ability to cope with the difficult
case of rapid variation in shell behaviour. The same wedge of the shell has been analyzed as in
Ref. [12] (see Fig. 6). In Table 3 results for normal deflection and membrane force under load
and at the equator are presented together with the results of three other elements previously
published in Ref. [12].

R/t =50
V=03
Fig. 6.
Table 3.
Deflection under load |Etw'”’/P| Membrane force under load |RN/s)/P|=|RNZ2/P|
CURSHL CURSHL Pres. CURSHL CURSHL Pres.
N (K-S) (D-V) TSS element (K-35) D-V) TSS element
2 12.79 12.73 18.10 24.76 1.65 1.68 7.05 1.1
4 20.67 20.57 20.95 23.60 7.85 8.00 8.64 11.89
6 21.08 20.98 21.11 22.36 9.34 9.56 9.76 10.83
Koiter: 21.20
Deflection at equator |Etw'™'/P| Membrane force at equator |[RNZ/P|
CURSHL CURSHL Pres. CURSHL CURSHL Pres.
N (K-98) (D-V) TSS element (K-95) (D-V) TSS element
2 0.2994 0.2993 0.0867 0.1857 0.0611 0.0615 0.3071 0.1591
4 0.2084 0.2083 0.2256 0.2069 0.1628 0.1627 0.1873 0.1592
6 0.2069 0.2072 0.2161 0.2069 0.1602 0.1602 0.1686 0.1592

Membrane: 0.2069 Membrane: 0.1592
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(d) Moderately thick shells. One of the advantageous properties of the new element is its
insensitivity with respect to the measure of thickness. In order to isolate the shear strain energy
effect, a plate bending situation is considered, conveniently eliminating the effect of curvature.
The case of a thick clamped circular plate under uniformly distributed load p is analyzed (see
Fig. 7). Table 4 contains results for central deflection, moments and shear forces for the
subdivisions N = 1 and N =2, Comparison is made with exact solutions and with the relevant
results of Ref. [10]. The results are in excellent agreement with theory even for a very coarse
subdivision.

" 1 "
BN J N
w

H

Fig. 7.

Table 4.
W(A) Q(lA) Q(IB) Mlﬂl) M(‘B‘) M(zj) MZBZ)
N =1, present approach -270.50 0.000 5.00 -8.125 125  -8.125 3.75

N =2, present approach -253.37 0.002  499/501 -8.124/-8.146 125 -8.135 3.72/3.79

N =2, Ref. [10] -253.71 — — — — — —
exact, ref. [26], shear. coef. =3 —-262.03 0.000 5.00 —-8.125 125 -8.125 375
exact, but shear. coef. = $ -252.28 0.000 5.00 -8.125 125 -8.125 3.75

CONCLUSIONS AND FUTURE CONSIDERATION

The theory of a new high-precision stress shell finite element is presented. It is tested on a
broad class of shell problems which virtually cover the whole practical range. This versatility
with respect to all kinds of shell situations is one of the favourable properties of the new
element. Results obtained with the proposed element are in general not less accurate than those
obtained by the known sophisticated elements. Equal accuracy of stresses and displacements is
of both esthetic and practical importance. Having developed and tested the new element, the
authors are presently seeking the most appropriate computer technique for working out
estimates for practical utilization. This will hopefully be published in the near future.
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